0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Состав и механизм действия лекарства

Состав и механизм действия лекарства

Цель данной статьи состоит в том, чтобы объяснить механизмы действия лекарств путем объединения эффектов, производимых ими на молекулярном, клеточном, тканевом и системном уровнях биологического организма. Основное внимание уделено действию на молекулярном и клеточном уровнях, а специфические действия лекарств на ткани и системы организма рассматриваются в Тканевое и системное действие лекарств.

Лекарственные средства действуют на четырех разных уровнях:

  • молекулярном, на котором белковые молекулы являются непосредственными мишенями для большинства лекарств. Эффекты на данном уровне определяют действие лекарств на следующем уровне;
  • клеточном, на котором биохимические и другие компоненты клетки участвуют в процессах трансдукции;
  • тканевом, на котором происходит изменение функций сердца, кожи, легких и др.;
  • системном, на котором происходит изменение функций сердечно-сосудистой и нервной систем, желудочно-кишечного тракта и др.

Для того чтобы понять механизм действия лекарств, необходимо знать, на какие молекулярные мишени действует вещество, природу системы трансдукции (клеточный ответ), типы ткани-мишени и механизмы, посредством которых ткань воздействует на системы организма. Механизмы действия лекарственных веществ нужно рассматривать на каждом из четырех уровней.

В качестве примера можно привести препарат пропранолол — β-адреноблокатор, используемый для лечения некоторых заболеваний, в том числе стенокардии, сердечной недостаточности из-за локальной ишемии (т.е. недостаточного кровотока) в сердце:

  • на молекулярном уровне пропранолол — конкурентный обратимый антагонист адреналина и норадреналина за действие на β-адренорецепторы;
  • на клеточном уровне пропранолол предотвращает β-адренозависимое увеличение внутриклеточного циклического аденозинмонофосфата (цАМФ), инициирующего фосфорилирование белков, мобилизацию ионов кальция и окислительный метаболизм;
  • на тканевом уровне пропранолол предотвращает β-адренозависимое увеличение силы и частоты сердечных сокращений, т.е. оказывает отрицательные инотропный и хронотропный эффекты;
  • на системном уровне пропранолол улучшает функцию сердечно-сосудистой системы. Он снижает β-адренозависимый ответ сердца на активность симпатической нервной системы, уменьшая тем самым потребность тканей сердца в кровотоке, что целесообразно при ограниченном притоке крови (например, при ишемии коронарных артерий).

Механизм действия лекарственных средств на четырех уровнях также можно показать на примере рифампицина, хотя этот препарат действует больше на бактерии, чем на ткани человека.

Рифампицин — это эффективный препарат для лечения туберкулеза:

  • на молекулярном уровне рифампицин связывает (и блокирует активность) полимеразы рибонуклеиновой кислоты (РНК) в микобактерии, которая вызывает туберкулез;
  • на клеточном уровне рифампицин ингибирует синтез РНК в микобактерии и таким образом убивает ее;
  • на тканевом уровне рифампицин предотвращает повреждение ткани легких, возникающее вследствие инфекции микобактерии;
  • на системном уровне рифампицин предотвращает недостаточность легочной функции, вызванную инфекцией микобактерии.

Лекарства можно классифицировать, основываясь на молекулярном, клеточном, тканевом и системном типах действия

На молекулярном уровне пропранолол всегда классифицируют как β-адреноблокатор. Но его выявление на клеточном, тканевом и системном уровнях зависит от патологии, для лечения которой его используют (например, стенокардии и гипертензии).

Фармакологическая классификация лекарственных средств включает виды оказываемых ими эффектов

Безусловно, важно классифицировать лекарства на основе как места их действия, так и вида оказываемого ими действия. Фармакология располагает большим запасом терминов для описания действия лекарств, которые будут представлены далее. Здесь же приводится краткое обсуждение классификации лекарств.

Термины, используемые для описания раличных типов фармакологического действия, зачастую составляют пары: «ингибитор» и «активатор», «антагонист» и «агонист», «депрессант» и «экситант», «прямой» и «непрямой». В этих примерах каждый термин из пары является антонимом другому. Такие термины помогают классифицировать тип фармакологического действия, оказываемого лекарством, но сами по себе малоинформативны (более того, часто эти термины используют неуместно):

  • термин «ингибитор» используют для определения средств, предотвращающих или уменьшающих физиологическую, биохимическую или фармакологическую активность. Ингибирование может происходить на уровне ферментов, нервной или гормональной системы, рецепторов, ионных каналов, клеточных мембран, а также отдельных органов и целого организма;
  • термин «активатор» противоположен по значению термину «ингибитор».

Таким образом, практически любое лекарство может быть рассмотрено либо как ингибитор, либо как активатор. Недостатком является то, что ингибитор в одном случае может выступать активатором в другом, например при стимулировании одного центра путем ингибирования другого.

Термины «антагонист» и «агонист» связаны тем, что антагонист препятствует агонисту осуществлять свое действие, в то время как агонисты — это вещества, производящие эффект. Если термины используют корректно, то и агонист, и антагонист должны воздействовать на один и тот же рецептор. Однако иногда термин «антагонист» используют неточно. Например, антагонистами кальция называют препараты, блокирующие Са2+-каналы.

Термины «супрессор» и «экситант» менее точные и определяют средства, которые, соответственно, уменьшают и увеличивают активность систем организма, в частности центральной нервной системы (ЦНС).

Некоторые лекарственные средства оказывают эффект в результате прямого действия на определенные ткани, в то время как другие — вследствие непрямого, или опосредованного, действия. Например, лекарства могут расслаблять гладкие мышцы сосудов путем прямого действия на мышцы или вторично — за счет высвобождения релаксантов прямого действия или ингибируя высвобождение и действие сократительных субстанций. В качестве других примеров можно привести отрицательное действие β-блокаторов (например, пропранолола) на сократимость сердца, который уменьшает действие симпатической системы на сердце. Амины (симпатомиметики) непосредственно учащают сокращения сердца путем действия на клетки водителя ритма, контролирующие частоту сокращений,в то время как атропин может ускорять сердечный ритм: как антагонист мускариновых рецепторов, он уменьшает действие парасимпатических нервов (через выход ацетилхолина) на сердце.

Ответ на действие лекарств проявляется на молекулярном, клеточном, тканевом и системном уровнях

Поскольку механизм действия лекарств проявляется на любом из четырех уровней, ответ на действие лекарств может быть определен таким же образом (табл. 2.1). Средства, которые активируют свои молекулярные мишени, называют агонистами или активаторами (точный термин зависит от природы молекулы-мишени). Средства, которые блокируют либо тормозят действие агонистов (активаторов) или инактивируют молекулу-мишень, называют антагонистами, блокаторами либо ингибиторами. Последние не обладают прямым действием на клеточном, тканевом и системном уровнях, но могут блокировать молекулярный ответ на действие эндогенных или экзогенных агонистов (активаторов).

Таблица 2.1 Четыре уровня воздействия лекарств

Фармакодинамика лекарственных средств: виды действия, локализация и механизм действия. Рецепторы. Основные и побочные действия лекарственных средств

Фармакодинамика– биологические .эффекты веществ, а также локализация и механизм их действия.

Местное действие – действие вещества, возникающее в месте его приложения.

Резорбтивное действие – действие вещества, развивающееся после его всасывания, поступления в общий кровоток и ткани.

Прямое действие – на месте непосредственного контакта вещества с тканью.

Рефлекторное влияние – влияние на экстеро- или интерорецепторов =>изменение состояния нервных .центров или исполнит.органов.

Нейротропные средства – структуры НС, синаптические образования с↑ чувствительностью.

«Мишени» — рецепторы, ионные каналы, Е, транспортные системы, гены.

Рецепторы – акт.группировки макромолекул субстратов, с которым взаимодействует вещество.

4 типа рецепторов:

1) осуществляют контроль за функцией ионных каналов (Н-х/р, ГАМК-рецепторы, глутаматные рецепторы)

2) сопряженные с эффектом через G-белки – ионные каналы или вторичные передатчики (М-х/р, адренорец.)

3) осуществляют прямой контроль функции эффекторного Е, тирозинкиназа, контроль фосфорилирования

4) контролируют трансктипцию ДНК (стероидные и тиреоидные гормоны, растворение цитозольных и ядерных белков)

Аллостерическое взаимодействие с рецептором не вызывает сигнала.

Пресинаптические рецепторы – медиаторы, сигнал.

Аффинитет – сродство вещества к рецептору =>комплекс В-Р.

Агонисты – вещества, которые при взаимодействии со специфическими рецепторами, вызывают в них изменения, приводящие к биолог.эффекту. обладают внутренней активностью – способность вещества, при взаимодействии с рецептором стимулировать его и вызывать эффект.

Полный агонист – вызывает мах эффект.

Частичный агонист – не вызывает мах эффект.

Антагонисты – вещества, которые при связывании с рецепторами не вызывают их стимуляции. Внутр.активность=0.

Конкурентные антагонисты – занимают одни и те же рецепторы.

Неконкурентные антагонисты – занимают участки не самого рецептора, но относящегося к нему.

Антагонист-агонист – действуют на разные подтипы рецепторов по-разному.

Неспецифические рецепторы – не связаны функционально со специфическими рецепторами.

Проявление основного действия – цель.

-за счет межмолекулярных связей (ковалентно)

— менее стойкая (ионная)

— Ван-дер-ваальсовы силы (гидрофобные взаимодействия)

Обратимое действие и необратимое действие – в зависимости от прочности связи В-Р.

Избирательное действие – взаимодействие вещества только с функц.однозначным рецептором определенной .локализации, нет влияния на другие рецепторы.

Основа избирательности – аффинитет:

-за счет определения функции группировок

— общая структурная организация вещества- комплементарность

— вторичные передатчики (цАМФ, цГМФ, ИФ, ДАГ)

Мишень для действия веществ: ионные каналы, Е, транспортные системы, гены.

Зависимость фарм.эффекта от свойств лекарственных средств и условий их применения:

хим.строение, физически –химические и физические свойства

дозы и концентрации

повторное применение лекарственных средств:

— кумуляция (↑ эффекта):матер., функц.

— толерантность (привыкание): ↓всасывания,↑скорости инактивации, ↓чувствительности,↑скорости выведения

— тахифилаксия (привыкание за 1 раз)

— лекарственная зависимость: псих., физическая.

4) взаимодействие лекарственных .средств:

Значение индивид.особенностей организма и его состояния для проявления действия лекарственных веществ:

Возраст, пол, генетические факторы, состояние организма, значение суточных режимов.

Основные виды лекарственной терапии:

Побочные эффекты неаллергического происхождения:

Сонливость, эйфория, ↑ тонуса.

1)первичные(прямое следствие влияния данного препарата на определенный субстрат): тошнота, рвота, раздражение слизистых

Аллергические реакции: лекарственные вещества в роли антигенов.

4 типа лекарственных аллергий:

1) немедленная (пенициллины, сульфаниламиды) – вовлечение IgЕ-антител – крапивница, сосудистый отек, бронхоспазм, анафилактический шок

2) IgG и IgМ-антитела активируют систему комплемента =>лизисциркулирующих клеток крови – гемолитическая реакция(метилдофа), тромбоцитопеническая пурпура(хинидин), агранулоцитоз(анальгин)

3) IgМ, IgЕ и IgG-антитела(+комплемент) => сосудистый эндотелий =>сывороточная болезнь — крапивница, артралгия, артрит, лимаденопатия, лихорадка

4) клеточные механизмы иммунитета – сенсибилизирующие Т-лимфоциты и макрофаги – контактный дерматит.

Идиосинкразия — болезненная реакция, возникающая у отдельных людей на раздражители, которые у большинства других не вызывают подобных явлений. В основе лежит или врождённая повышенная чувствительность ВНС к определенным раздражителям, или реакция, возникающая в организме в результате повторных слабых воздействий некоторых веществ, не способных вызывать в организме выработку антител. И. отличается от аллергии тем, что может развиваться и после первого контакта с непереносимым раздражителем.

Токсические эффекты: ↓слуха, вестибулярные расстройства, слепота, нарушение проведения возбуждения по миокарду, поражения печени, нарушения кроветворения, угнетение центров продолговатого мозга.

Передозировка – превышение мах переносимых доз (случайная, сознательная).

Тератогенное действие – во время беременности (фокомелия-ластоподобные конечности, амелия — отсутствие конечностей, гемангиомы на лице, аномалии ЖКТ).

Эмбриотическое действие – до 12 нед.беременности.

Фенотоксическое действие – поздние сроки.

Мутагенность – способность веществ вызывать стойкое повреждение зародышевой клетки и ее генетического аппарата, изменение генотипа потомства.

Канцерогенность – способность веществ вызывать развитие злокачественных опухолей.

Общие признаки лечения острых отравлений лекарственными средствами:

1)задержка всасывания токсического вещества в кровь (рвота, промывание желудка, кишечника, адсорбция)

2)удаление токсического вещества из организма (форсированный диурез, гемодиализ, перитонеальный диализ, гемосорбция, замещение крови, плазмоферез, лимфодиализ, лимфосорбция)

3)устранение действия всосавшегося токсического вещества (антидоты, антагонисты)

4) симптоматическая терапия (поддержание дыхания и кровообращения), комплекс детоксикационных мероприятий, реанимационная терапия)

5)профилактика острых отравлений (предупреждение, правильные выписка и хранение, прием по назначению врача, строгость доз).

Зависимость фармакотерапевтического эффекта от свойств лекарственных средств и условий их применения, физико-химические свойства, дозы и концентрации, повторное применение лекарственных средств.

Св-ва лек.ср-в обусл.их хим.строен.,налич.функц-но актив.групир.,формой и размер.их мол-л.Для эф-го взаим.в-ва с рец-ром необх.такая стр-ра лек.в-ва,кот.обеспеч.наиб.тесный контактего с рец-ром. От степени сближен.в-ва с рец-ром завис.прочн.межмол.св.Для взаим.в-ва с рец-ром н. их простр.соответ.,т.е.комплементарность.Если в-во и.неск.функц.акт.группир.,то необх.учитыв.расстоян.м/у ними.Выясн-е завис. м/у хим.стр.в-в и их биол.активн.явл.одним из наиб.важн.направл.в созд.новых препаратов.Многие колич.и качест.хар-ки действ.зав.от таких физ.-хим. и физ.св-в,как раствор-ть в воде/липидах,для порошкообр.соед. – от степени измельчен.,для летуч.в-в – от степени их летучести и т.д. Очень важна степень диссоц.

Читать еще:  Прогепар гепарсил и гепарео сравнение инструкции по применению

Гидрофильные соеденения проникают внутрь капилляра через поры мембраны благодаря фильтрации, а липофильные- путем простой диффузии. Из капилляра в межкл жидкость- теми же механизмами. Из нее липофильные в клетки путем диффузии, а гидрофильные активным тр-ом. Некоторые препараты связываются с белками крови(альбумины). После распада этого комплекса в-во оказывает свое д-е. Сам комплекс фарм неактивен. Существует зависимость д-я от стериоизомера, кол-ва ф-но активных группировок и др.

Пороговая – это минимальная доза ЛС, которая вызывает какой-либо биологический эффект.

Среднетерапевтическая – доза препарата, которая вызывает оптимальный лечебный эффект.

Высшая терапевтическая – доза, которая вызывает наибольший фармакологический эффект.

Широта терапевтического действия – это интервал между пороговой и высшей терапевтической дозами.

Токсическая — доза, при которой возникают симптомы отравления.

Смертельная – доза, которая вызывает смерть.

Разовая – pro dosi – доза на один прием.

Курсовая – доза на курс лечения.

Ударная – доза, назначаемая в начале лечения, которая превышает среднетерапевтическую в 2-3 раза и назначается с целью быстрого достижения

необходимой концентрации ЛС в крови или других биосредах.

Поддерживающая – доза, назначаемая после ударной, и она соответствует, как правило, среднетерапевтической.

Действие лекарств при их повторном введении в организм.

При повторном применении эффективность лекарственных средств может изменятся как в сторону повышения, так и в сторону снижения. Возникают

Повышение фармакологического эффекта связано с его способностью к кумуляции. Кумуляция (cumulatio) – это усиление действия ЛС при их повторном введении в организм.

Кумуляция бывает двух видов: материальнаяи функциональная.

Материальная кумуляция – реализуется, когда увеличение лечебного эффекта происходит за счет накопления в организме ЛС.

Функциональная кумуляция – это когда увеличение лечебного эффекта и появление симптомов передозировки происходит быстрее, чем накопление в

организме самого препарата.

Привыкание – это снижение фармакологической активности препарата при его повторном введении в организм.

Перекрестное привыкание – это привыкание к препаратам, сходного (близкого) химического строения

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: При сдаче лабораторной работы, студент делает вид, что все знает; преподаватель делает вид, что верит ему. 9558 — | 7357 — или читать все.

188.64.174.65 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

2.5.3. Основные механизмы действия лекарств

Многие лекарства имеют одинаковый механизм действия и, следовательно, могут быть объединены в группы и подгруппы. Количество различных фармакологических групп (подгрупп) ограничивается десятками. Лекарственные препараты и фармгруппы изучаются будущим врачом в институте, но для глубокого понимания фармакологии требуется немало специальных знаний и опыт работы в клинике. Однако и неспециалисту полезно попытаться понять хотя бы общие принципы действия лекарств. Тогда пациент сможет вести более аргументированный диалог с врачом, что повысит эффективность их общения. Давайте попробуем разобраться, что же происходит внутри нас, когда мы принимаем лекарство?

Под действием лекарств в организме не происходит новых биохимических реакций или физиологических процессов. Большинство лекарств только стимулируют, имитируют, угнетают или полностью блокируют действие внутренних посредников, передающих сигналы между различными органами и системами через биологические субстраты.

Каждое звено механизма обратной связи участвует в регулировании функций клетки и целого организма, а, следовательно, может служить “мишенью” – биологическим субстратом – для лекарственных средств. Из двух участников реакции “лекарство + биологический субстрат” первый обычно хорошо известен, специалисты знают его структуру и свойства. О втором зачастую информация более скудная: хотя последние 10-20 лет интенсивно изучается структура и функции различных биологических субстратов, однако до полной ясности пока еще далеко.

Многие ферменты являются “мишенями” для лекарств. Лекарства могут угнетать или – реже – повышать активность этих ферментов, а также являться для них “ложными” субстратами. Например, угнетающими активность (ингибирующими) ферментов средствами являются ненаркотические анальгетики и нестероидные противовоспалительные средства (глава 3.9), некоторые противоопухолевые препараты (метотрексат), а ложным субстратом – метилдофа. Ингибиторы ангиотензинпревращающего фермента (АПФ) (каптоприл и эналаприл) широко применяются в качестве понижающих артериальное давление (гипотензивных) средств (глава 3.5). Изменяя активность ферментов, лекарства изменяют внутриклеточные процессы и тем самым обеспечивают лечебный эффект.

В основе фармакологического действия лекарств лежит их физико-химическое или химическое взаимодействие с такими “мишенями”. Возможность взаимодействия лекарства с биологическим субстратом зависит в первую очередь от химического строения каждого из них. Последовательность расположения атомов, пространственная конфигурация молекулы, величина и расположение зарядов, подвижность фрагментов молекулы относительно друг друга влияют на прочность связи и, тем самым, на силу и продолжительность фармакологического действия. Молекула лекарственного вещества в большинстве случаев имеет очень маленький размер по сравнению с биологическими субстратами, поэтому она может соединяться только с небольшим фрагментом макромолекулы рецептора. При любой реакции между лекарством и биологическим субстратом образуется химическая связь (смотри главу 1.4).

Из школьного курса химии известно, что связь между двумя различными веществами может быть обратимой или необратимой, временной или прочной. Она образуется благодаря электростатическим и ван-дер-ваальсовым силам, водородным и гидрофобным взаимодействиям. Прочные ковалентные связи между лекарством и биологическим субстратом встречаются редко. Например, некоторые противоопухолевые средства за счет ковалентного взаимодействия “сшивают” соседние спирали ДНК, являющейся в данном случае субстратом, и необратимо повреждают ее, вызывая гибель опухолевой клетки.

Итак, есть сигнальные молекулы (медиаторы, гормоны, эндогенные биологически активные вещества), и есть биологические субстраты, с которыми эти молекулы взаимодействуют. Лекарства, введенные в организм, могут воспроизводить или блокировать эффекты естественных сигнальных молекул, изменяя тем самым функции клеток, тканей, органов и систем органов. Этим определяется фармакологическое действие лекарств (таблица 2.5.1).

Таблица 2.5.1. Основные принципы действия лекарственных средств (ЛС)
Вид взаимодействияМеханизм взаимодействия ЛС и рецептораЦель создания и примеры таких препаратов
Воспроизведение действия (миметический эффект, агонизм)ЛС по физико-химической структуре очень похоже на сигнальную молекулу (гормон, медиатор). Рецептор, взаимодействуя с ЛС, активирует или тормозит соответствующую функцию клетки. Таким образом, ЛС имитирует действие естественного гормона или медиатораПрепараты оказывают более выраженное, стабильное и длительное по сравнению с медиатором действие. Так действуют адрено- и холиномиметики (смотри адренергические и холинергические средства) и некоторые другие препараты
Конкурентное действие (блокирующий, литический эффект, антагонизм)ЛС по структуре частично похоже на сигнальную молекулу, что позволяет взаимодействовать с рецептором, образуя над ним экран. Возникает конкурентная борьба за рецептор, в которой ЛС имеет “численное преимущество”! Поэтому естественный медиатор или гормон остается “не у дел”, и реакция не “запускается”Препараты позволяют корректировать (блокировать) физиологические реакции клетки. Примером таких препаратов являются адрено-, холино- и гистаминоблокаторы (смотри соответствующие главы)
Неконкурентное взаимодействиеМолекула ЛС связывается с рецепторной макромолекулой не в месте ее взаимодействия с медиатором, а на другом участке. При этом изменяется пространственная структура рецептора, что облегчает или затрудняет его контакт с естественным медиаторомБензодиазепины (оказывают анксиолитическое, седативное и противосудорожное действие), взаимодействуя с бензодиазепиновыми рецепторами, увеличивают прочность связи ГАМК (нейромедиатор с тормозящим действием на центральную нервную систему) с ГАМК-рецепторами

Воспроизведение действия (миметический эффект) наблюдается в тех случаях, когда молекула лекарственного вещества и естественная сигнальная молекула очень похожи: имеют высокое соответствие физико-химических свойств и структуры, обеспечивающих одинаковые внутриклеточные изменения. Результатом взаимодействия лекарства с рецептором в этом случае является активация или торможение определенной функции клеток в полном соответствии с действием эндогенной (внутренней) сигнальной молекулы. Подобным образом действуют очень многие аналоги гормонов и медиаторов (глава 3.1, глава 3.2, глава 3.3). Цель создания подобных лекарств – получение препаратов с более выраженным, стабильным и длительным по сравнению с медиатором (адреналин, ацетилхолин, серотонин и другие) действием, а также восполнение дефицита медиатора или гормона и, соответственно, их функций.

Конкурентное действие (блокирующий, литический эффект) встречается часто и присуще лекарствам, которые лишь частично похожи на сигнальную молекулу (например, медиатор). В этом случае лекарство способно связываться с одним из участков рецептора, но оно не вызывает комплекса реакций, сопутствующих действию естественного медиатора. Такое лекарство как бы создает над рецептором защитный экран, препятствуя его взаимодействию с естественным медиатором, гормоном и так далее. Конкурентная борьба за рецептор, называемая антагонизмом (отсюда и название лекарств – антагонисты), позволяет корректировать физиологические и патологические реакции. Подобным образом действуют адрено-, холино- и гистаминолитики (глава 3.2, глава 3.7, глава 3.10).

Следующий тип взаимодействия лекарства с рецептором называют неконкурентным, и в этом случае молекула лекарства связывается с рецепторной макромолекулой не в месте ее взаимодействия с медиатором, а на рядом расположенном участке, то есть действует опосредованно. При этом происходит изменение пространственной структуры рецептора, вызывающее раскрытие или закрытие его для естественного медиатора. В этих случаях рецептор для лекарства и рецептор для медиатора не совпадают, но находятся в одном рецепторном комплексе, и лекарство не вступает в прямое взаимодействие с рецептором. Ярким примером лекарств, действующих по этому типу, являются бензодиазепины – большая группа структурно родственных соединений, обладающих анксиолитическими, снотворными и противосудорожными свойствами (глава 3.1). Соединяясь со специфическими бензодиазепиновыми рецепторами, которые взаимосвязаны с рецепторами гамма-аминомасляной кислоты (ГАМК), лекарственное средство изменяет пространственную конфигурацию ГАМК-рецепторов и увеличивает прочность их связи с субстратом – гамма-аминомасляной кислотой. В результате усиливается тормозящее влияние этого медиатора на центральную нервную систему, чем обеспечивается лечебный эффект препаратов.

Некоторые лекарства способны повышать или понижать синтез естественных регуляторов (медиаторов, гормонов и так далее), влиять на процессы их накопления в клетках или ферментного разрушения. Подробнее такие эффекты будут рассмотрены, в частности, в главе 3.1, посвященной средствам, влияющим на функции центральной нервной системы.

Механизм действия лекарств на молекулярном и клеточном уровнях имеет очень большое значение, но не менее важно знать, на какие физиологические процессы влияет препарат, то есть каковы его эффекты на системном уровне. Возьмем, к примеру, лекарственные средства, снижающие артериальное давление. Один и тот же результат – снижение давления – может быть достигнут разными способами:

1) угнетением сосудодвигательного центра (магния сульфат);

2) угнетением передачи возбуждения в вегетативной нервной системе (ганглиоблокаторы);

3) ослаблением работы сердца, уменьшением его ударного и минутного объемов (бета-адреноблокаторы);

6) снижением активности системы ренин-ангиотензин (ингибиторы АПФ, антагонисты ангиотензиновых рецепторов) и другие.

Таким образом, одни и те же фармакологические эффекты (увеличение частоты сокращений сердца, расширение бронхов, устранение боли и так далее) можно получить с помощью нескольких препаратов, имеющих различные механизмы действия.

Еще один пример – кашель. Если кашель обусловлен воспалением дыхательных путей, назначают противокашлевые средства периферического действия, причем, часто комбинируют их с отхаркивающими препаратами. Кашель у больных туберкулезом или при новообразованиях бронхов устраняют центрально действующие наркотические анальгетики (кодеин). А в детской практике в тяжелых случаях коклюша кашель лечат введением нейролептика хлорпромазина (препарат Аминазин).

Читать еще:  Состав препарата хепель

Выбор лекарства, необходимого конкретному больному, осуществляет врач, руководствуясь знанием механизма действия лекарственных препаратов и обусловленных им терапевтических и побочных эффектов. Мы надеемся, что теперь вам стало понятнее, как сложен этот выбор, и какими знаниями и опытом надо обладать, чтобы правильно его сделать.

Но поскольку все органы и системы взаимосвязаны, то какие-либо изменения функции одного органа или системы вызывают сдвиги в работе других органов и систем. Кроме того, субстраты для взаимодействия могут находиться в разных органах, что также обеспечивает их взаимосвязь. Она проявляется как на физиологическом, так и на биохимическом уровнях, определяя неоднозначность и многогранность действия лекарств, наличие не только лечебного, но и побочного действия у большинства препаратов.

Так, расширение сосудов и понижение артериального давления при приеме нитроглицерина сопровождаются рефлекторным повышением частоты сердечных сокращений, а также обусловленной расширением сосудов головного мозга, так называемой нитратной головной болью. Атропин, обладающий выраженными спазмолитическими свойствами, за счет своего механизма действия может нарушить отток внутриглазной жидкости, вызвав приступ глаукомы, и так далее.

На взаимодействие лекарств с биологическим субстратами, а, соответственно, и на эффекты препарата, большое влияние оказывают прием пищи, алкоголя, возраст пациента, одновременный прием других препаратов и еще ряд факторов, роль которых рассматривается в следующих главах.

Состав и механизм действия лекарства

Цель данной статьи состоит в том, чтобы объяснить механизмы действия лекарств путем объединения эффектов, производимых ими на молекулярном, клеточном, тканевом и системном уровнях биологического организма. Основное внимание уделено действию на молекулярном и клеточном уровнях, а специфические действия лекарств на ткани и системы организма рассматриваются в Тканевое и системное действие лекарств.

Лекарственные средства действуют на четырех разных уровнях:

  • молекулярном, на котором белковые молекулы являются непосредственными мишенями для большинства лекарств. Эффекты на данном уровне определяют действие лекарств на следующем уровне;
  • клеточном, на котором биохимические и другие компоненты клетки участвуют в процессах трансдукции;
  • тканевом, на котором происходит изменение функций сердца, кожи, легких и др.;
  • системном, на котором происходит изменение функций сердечно-сосудистой и нервной систем, желудочно-кишечного тракта и др.

Для того чтобы понять механизм действия лекарств, необходимо знать, на какие молекулярные мишени действует вещество, природу системы трансдукции (клеточный ответ), типы ткани-мишени и механизмы, посредством которых ткань воздействует на системы организма. Механизмы действия лекарственных веществ нужно рассматривать на каждом из четырех уровней.

В качестве примера можно привести препарат пропранолол — β-адреноблокатор, используемый для лечения некоторых заболеваний, в том числе стенокардии, сердечной недостаточности из-за локальной ишемии (т.е. недостаточного кровотока) в сердце:

  • на молекулярном уровне пропранолол — конкурентный обратимый антагонист адреналина и норадреналина за действие на β-адренорецепторы;
  • на клеточном уровне пропранолол предотвращает β-адренозависимое увеличение внутриклеточного циклического аденозинмонофосфата (цАМФ), инициирующего фосфорилирование белков, мобилизацию ионов кальция и окислительный метаболизм;
  • на тканевом уровне пропранолол предотвращает β-адренозависимое увеличение силы и частоты сердечных сокращений, т.е. оказывает отрицательные инотропный и хронотропный эффекты;
  • на системном уровне пропранолол улучшает функцию сердечно-сосудистой системы. Он снижает β-адренозависимый ответ сердца на активность симпатической нервной системы, уменьшая тем самым потребность тканей сердца в кровотоке, что целесообразно при ограниченном притоке крови (например, при ишемии коронарных артерий).

Механизм действия лекарственных средств на четырех уровнях также можно показать на примере рифампицина, хотя этот препарат действует больше на бактерии, чем на ткани человека.

Рифампицин — это эффективный препарат для лечения туберкулеза:

  • на молекулярном уровне рифампицин связывает (и блокирует активность) полимеразы рибонуклеиновой кислоты (РНК) в микобактерии, которая вызывает туберкулез;
  • на клеточном уровне рифампицин ингибирует синтез РНК в микобактерии и таким образом убивает ее;
  • на тканевом уровне рифампицин предотвращает повреждение ткани легких, возникающее вследствие инфекции микобактерии;
  • на системном уровне рифампицин предотвращает недостаточность легочной функции, вызванную инфекцией микобактерии.

Лекарства можно классифицировать, основываясь на молекулярном, клеточном, тканевом и системном типах действия

На молекулярном уровне пропранолол всегда классифицируют как β-адреноблокатор. Но его выявление на клеточном, тканевом и системном уровнях зависит от патологии, для лечения которой его используют (например, стенокардии и гипертензии).

Фармакологическая классификация лекарственных средств включает виды оказываемых ими эффектов

Безусловно, важно классифицировать лекарства на основе как места их действия, так и вида оказываемого ими действия. Фармакология располагает большим запасом терминов для описания действия лекарств, которые будут представлены далее. Здесь же приводится краткое обсуждение классификации лекарств.

Термины, используемые для описания раличных типов фармакологического действия, зачастую составляют пары: «ингибитор» и «активатор», «антагонист» и «агонист», «депрессант» и «экситант», «прямой» и «непрямой». В этих примерах каждый термин из пары является антонимом другому. Такие термины помогают классифицировать тип фармакологического действия, оказываемого лекарством, но сами по себе малоинформативны (более того, часто эти термины используют неуместно):

  • термин «ингибитор» используют для определения средств, предотвращающих или уменьшающих физиологическую, биохимическую или фармакологическую активность. Ингибирование может происходить на уровне ферментов, нервной или гормональной системы, рецепторов, ионных каналов, клеточных мембран, а также отдельных органов и целого организма;
  • термин «активатор» противоположен по значению термину «ингибитор».

Таким образом, практически любое лекарство может быть рассмотрено либо как ингибитор, либо как активатор. Недостатком является то, что ингибитор в одном случае может выступать активатором в другом, например при стимулировании одного центра путем ингибирования другого.

Термины «антагонист» и «агонист» связаны тем, что антагонист препятствует агонисту осуществлять свое действие, в то время как агонисты — это вещества, производящие эффект. Если термины используют корректно, то и агонист, и антагонист должны воздействовать на один и тот же рецептор. Однако иногда термин «антагонист» используют неточно. Например, антагонистами кальция называют препараты, блокирующие Са2+-каналы.

Термины «супрессор» и «экситант» менее точные и определяют средства, которые, соответственно, уменьшают и увеличивают активность систем организма, в частности центральной нервной системы (ЦНС).

Некоторые лекарственные средства оказывают эффект в результате прямого действия на определенные ткани, в то время как другие — вследствие непрямого, или опосредованного, действия. Например, лекарства могут расслаблять гладкие мышцы сосудов путем прямого действия на мышцы или вторично — за счет высвобождения релаксантов прямого действия или ингибируя высвобождение и действие сократительных субстанций. В качестве других примеров можно привести отрицательное действие β-блокаторов (например, пропранолола) на сократимость сердца, который уменьшает действие симпатической системы на сердце. Амины (симпатомиметики) непосредственно учащают сокращения сердца путем действия на клетки водителя ритма, контролирующие частоту сокращений,в то время как атропин может ускорять сердечный ритм: как антагонист мускариновых рецепторов, он уменьшает действие парасимпатических нервов (через выход ацетилхолина) на сердце.

Ответ на действие лекарств проявляется на молекулярном, клеточном, тканевом и системном уровнях

Поскольку механизм действия лекарств проявляется на любом из четырех уровней, ответ на действие лекарств может быть определен таким же образом (табл. 2.1). Средства, которые активируют свои молекулярные мишени, называют агонистами или активаторами (точный термин зависит от природы молекулы-мишени). Средства, которые блокируют либо тормозят действие агонистов (активаторов) или инактивируют молекулу-мишень, называют антагонистами, блокаторами либо ингибиторами. Последние не обладают прямым действием на клеточном, тканевом и системном уровнях, но могут блокировать молекулярный ответ на действие эндогенных или экзогенных агонистов (активаторов).

Таблица 2.1 Четыре уровня воздействия лекарств

Механизм действия лекарства «Глюкозамин», показания, противопоказания, состав, форма выпуска, взаимодействия и побочные эффекты

Глюкозамин для суставов (синоним: гексозамин) – лекарственное средство, которое применяется в клинической практике для лечения заболеваний скелетно-мышечной системы. В статье мы разберем Глюкозамин: механизм действия и инструкцию по применению.

Гексозамин

Внимание! В анатом-терапевтически-химической классификации (АТХ) глюкозамин обозначается кодом M01AX05. Международное непатентованное наименование: Glucosamine.

Форма выпуска

Глюкозамин обычно вводится перорально в виде таблетки или капсулы. Глюкозамин был выделен в 1876 году Георгом Ледерхосом путем гидролиза хитина. Стереохимия глюкозамина была полностью изучена Вальтером Хауортом в 1939 году. Состав различных препаратов существенно отличается.

Хитин

Фармакодинамика и фармакокинетика: характеристика

Гексозамин изучается с 1969 года как терапевтический препарат при остеоартрозе. Первоначальный эффект был выявлен в некоторых неконтролируемых исследованиях после введения Глюкозамина сульфата путем инъекции. Однако, клинические исследования начались не раньше начала 1980-х годов, когда итальянская фармацевтическая компания Rottapharm из Милана начала выпускать таблетки Глюкозамина сульфата. С таблетками этой марки почти все исследования Гексозамина проводились в 80-х и 90-х годах ХХ века. Rottapharm запатентовал метод экстракции для извлечения Гексозамина из экзоскелета ракообразных.

Артроз

Глюкозамин является естественным гликозаминогликаном. Это простое соединение, состоящее из молекулы глюкозы, из которой гидроксильная группа замещена аминогруппой (NH 2 -группой) в 2-положении. Это самый существенный строительный блок для биосинтеза макромолекул:

У людей и животных эти биополимеры встречаются почти во всех тканях организма, но самые высокие концентрации обнаруживаются в хрящах (матрице хряща и синовиальной жидкости) и связках.

Глюкозамин иногда используется в качестве лекарственного средства, поскольку, как показали исследование in vitro и эксперименты на животных, он способен нормализовать обмен хряща, восстановить поврежденный сустав, а также оказывает легкие противовоспалительные эффекты. Исследования на людях дают разные результаты. По этой причине это не общепринятый метод лечения, и он популярен в основном в альтернативной медицине. Сульфат глюкозамина был зарегистрирован как лекарство в более чем 56 странах (включая 22 страны ЕС).

Гексозамин является биохимическим предшественником всех азотсодержащих сахаров. Глюкозамин сам по себе не включен в эти макромолекулы. Он сначала превращается в UDP-N-ацетилглюкозамин, а затем в UDP-N-ацетилгалактозамин. Последний может быть включен непосредственно в упомянутые макромолекулы.

Основные вещества, в синтезе которых участвует препарат:

  • протеогликаны;
  • хондроитинсульфат;
  • пептидогликан;
  • гиалуронан;
  • гликопротеины;
  • хитин.

Сульфат глюкозамина снижает активность катаболических ферментов в хряще (матриксные металлопротеазы) и, таким образом, препарат с активным веществом ингибирует деградацию протеогликанов.

Хрящевые клетки могут продуцировать достаточное количество глюкозамина в здоровых условиях с использованием фермента глюкозаминсинтетазы. Он состоит из D-глюкозамина фруктозо-6-фосфата, где аминогруппа является производным от глутамина (незаменимая аминокислота).

Глутамин

С возрастом активность фермента, по-видимому, снижается. В результате уменьшается количество эндогенно продуцируемого глюкозамина.

Около 90% перорально принимаемого глюкозамина гидрохлорида и сульфата абсорбируются интактно из желудочно-кишечного тракта. Биодоступность у людей составляется около 20%. Принятый препарат достигает сустава через синовиальную жидкость, из которой он попадает в хрящевые клетки (хондроциты) и включается в состав компонентов гликозаминогликановых цепей. Период полувыведения у людей колеблется от 15 часов до 70 часов.

Гексозамин в основном выводится с мочой, только небольшие количества можно найти в стуле. Значительные количества также превращаются в двуокись углерода и выделяются через выдыхаемый воздух.

Учитывая, что артрит является аутоиммунным заболеванием, в котором Глюкозамин продемонстрировал свой положительный эффект, его иммуномодулирующий эффект испытывают при других аутоиммунных заболеваниях, например, в животной модели рассеянного склероза.

Метаанализ, опубликованный британским медицинским журналом в 2010 году показал, что препарат неэффективен при лечении пациентов с артрозом бедра или колена. Новое исследование, опубликованное в 2014 году, показывает, что добавление глюкозамина не уменьшает болевые симптомы. В 2013 году Сиднейский университет завершил долгосрочную оценку исследований препарата. Ученые пришли к выводу, что препарат эффективен не больше плацебо. На данный момент пересматривается решение о применении препарата в медицинских целях из-за ограниченных доказательствах эффективности медикамента. В 2019 году выйдет крупное исследование, которое оценит все преимущества от лечения препаратом.

Читать еще:  Фламин инструкция по применению состав показания аналоги и отзывы

Показания и противопоказания

Когда хрящевая матрица повреждается, например, как при остеоартрозе, длина гликозаминогликанов уменьшается, как и их связывание с другими цепями, такими как коллаген. В результате большее количество воды проникает в хрящ, делая его более мягким. Из-за воды в значительной степени теряется амортизирующая функция хряща. Он также повреждается быстрее, вызывая утечку гликозаминогликанов. В результате качество хряща ухудшается еще больше.

Основная идея применения в качестве терапевтического средства при остеоартрозе заключалась в том, что глюкозамин, как важнейший строительный блок гликозаминогликанов, стимулирует выработку гликозаминогликанов в хрящах. Однако концентрации гексозамина, которые стимулируют продуцирование гликозаминогликанов in vitro, являются высокими и, вероятно, намного выше, чем физиологические концентрации, достигнутые in vivo после введения. Хотя, безусловно, нельзя исключать, что накопление происходит после повторного дозирования, тем самым достигая гораздо более высоких концентраций локально. Он может быть полезным только при регулярном применении.

Тем не менее, недавно был предложен альтернативный (эпигенетический) механизм действия. Лекарственный препарат способен ингибировать экспрессию гена IL-1β в хондроцитах, тем самым противодействуя NF-kB-опосредованным воспалительным реакциям.

Основные ограничения к применению:

  • гиперчувствительность;
  • заболевания печени;
  • почечная недостаточность;
  • сахарный диабет.

Противопоказан препарат и во время беременности.

Побочные действия

Препарат может содержать аллергены ракообразных. В литературе описана одна реакция гиперчувствительности после использования лекарства (ангиодистрофия).

В случае глюкозамина, полученного в соответствии с фармацевтическими стандартами качества, общая фракция белка удаляется, а конечный продукт больше не содержит аллергенов. Такой препарат хорошо переносится людьми с аллергией на ракообразные.

Глюкозамин не влияет на метаболизм холестерина и липидов у диабетиков или на их уровни аполипопротеина AI. Исследования на животных показали, что глюкозамин потенциально может потенцировать гиперлипидемию, но это свойство не было продемонстрировано в исследованиях на людях.

Дозировка и передозировка: краткое руководство

Многие спрашивают: как принимать препарат? Эффективная доза, согласно аннотации, для составляет 1500 миллиграмм гексозамина в день при артрите или артрозе пальцев, конечностей и других патологий. В норме рекомендуется принимать препарат не менее 3-4 месяцев. Случаев передозировки не зафиксировано.

Аналоги

Основные аналоги и заменители препарата:

Подобрать аналог поможет врач.

Взаимодействие

Препарат может уменьшить эффективность некоторых лекарств, используемых при лечении диабета:

  • Глибурида;
  • Глипизида;
  • Глимепирида;
  • Акарбоза;
  • Натеглинида;
  • Метформина;
  • Пиоглитазона;
  • Росиглитазона;
  • Инсулина.

Медикамент может также снизить эффективность некоторых препаратов, используемых при лечении рака – этопозид и доксорубицин (адриамицин).

Метформин

Совет! Не рекомендуется употреблять медикаментозные средства (лечебные мази, гели, биологические добавки, витаминные комплексы и другие препараты) без консультации с врачом.

При суставных заболеваниях тазоббедреного, коленного (гонартроз) и других сочленений рекомендуется обратиться к врачу. В особенности при заболеваниях шейного или грудного отдела позвоночника запрещено применять лекарство без обсуждения с доктором. Список нужных препаратов (уколов или таблеток) и витаминов, которые необходимо пить, а также их дозу назначит врач. В целях профилактики употребление оправдано при правильно поставленном диагнозе.

Фармакодинамика лекарственных средств: виды действия, локализация и механизм действия. Рецепторы. Основные и побочные действия лекарственных средств

Фармакодинамика– биологические .эффекты веществ, а также локализация и механизм их действия.

Местное действие – действие вещества, возникающее в месте его приложения.

Резорбтивное действие – действие вещества, развивающееся после его всасывания, поступления в общий кровоток и ткани.

Прямое действие – на месте непосредственного контакта вещества с тканью.

Рефлекторное влияние – влияние на экстеро- или интерорецепторов =>изменение состояния нервных .центров или исполнит.органов.

Нейротропные средства – структуры НС, синаптические образования с↑ чувствительностью.

«Мишени» — рецепторы, ионные каналы, Е, транспортные системы, гены.

Рецепторы – акт.группировки макромолекул субстратов, с которым взаимодействует вещество.

4 типа рецепторов:

1) осуществляют контроль за функцией ионных каналов (Н-х/р, ГАМК-рецепторы, глутаматные рецепторы)

2) сопряженные с эффектом через G-белки – ионные каналы или вторичные передатчики (М-х/р, адренорец.)

3) осуществляют прямой контроль функции эффекторного Е, тирозинкиназа, контроль фосфорилирования

4) контролируют трансктипцию ДНК (стероидные и тиреоидные гормоны, растворение цитозольных и ядерных белков)

Аллостерическое взаимодействие с рецептором не вызывает сигнала.

Пресинаптические рецепторы – медиаторы, сигнал.

Аффинитет – сродство вещества к рецептору =>комплекс В-Р.

Агонисты – вещества, которые при взаимодействии со специфическими рецепторами, вызывают в них изменения, приводящие к биолог.эффекту. обладают внутренней активностью – способность вещества, при взаимодействии с рецептором стимулировать его и вызывать эффект.

Полный агонист – вызывает мах эффект.

Частичный агонист – не вызывает мах эффект.

Антагонисты – вещества, которые при связывании с рецепторами не вызывают их стимуляции. Внутр.активность=0.

Конкурентные антагонисты – занимают одни и те же рецепторы.

Неконкурентные антагонисты – занимают участки не самого рецептора, но относящегося к нему.

Антагонист-агонист – действуют на разные подтипы рецепторов по-разному.

Неспецифические рецепторы – не связаны функционально со специфическими рецепторами.

Проявление основного действия – цель.

-за счет межмолекулярных связей (ковалентно)

— менее стойкая (ионная)

— Ван-дер-ваальсовы силы (гидрофобные взаимодействия)

Обратимое действие и необратимое действие – в зависимости от прочности связи В-Р.

Избирательное действие – взаимодействие вещества только с функц.однозначным рецептором определенной .локализации, нет влияния на другие рецепторы.

Основа избирательности – аффинитет:

-за счет определения функции группировок

— общая структурная организация вещества- комплементарность

— вторичные передатчики (цАМФ, цГМФ, ИФ, ДАГ)

Мишень для действия веществ: ионные каналы, Е, транспортные системы, гены.

Зависимость фарм.эффекта от свойств лекарственных средств и условий их применения:

хим.строение, физически –химические и физические свойства

дозы и концентрации

повторное применение лекарственных средств:

— кумуляция (↑ эффекта):матер., функц.

— толерантность (привыкание): ↓всасывания,↑скорости инактивации, ↓чувствительности,↑скорости выведения

— тахифилаксия (привыкание за 1 раз)

— лекарственная зависимость: псих., физическая.

4) взаимодействие лекарственных .средств:

Значение индивид.особенностей организма и его состояния для проявления действия лекарственных веществ:

Возраст, пол, генетические факторы, состояние организма, значение суточных режимов.

Основные виды лекарственной терапии:

Побочные эффекты неаллергического происхождения:

Сонливость, эйфория, ↑ тонуса.

1)первичные(прямое следствие влияния данного препарата на определенный субстрат): тошнота, рвота, раздражение слизистых

Аллергические реакции: лекарственные вещества в роли антигенов.

4 типа лекарственных аллергий:

1) немедленная (пенициллины, сульфаниламиды) – вовлечение IgЕ-антител – крапивница, сосудистый отек, бронхоспазм, анафилактический шок

2) IgG и IgМ-антитела активируют систему комплемента =>лизисциркулирующих клеток крови – гемолитическая реакция(метилдофа), тромбоцитопеническая пурпура(хинидин), агранулоцитоз(анальгин)

3) IgМ, IgЕ и IgG-антитела(+комплемент) => сосудистый эндотелий =>сывороточная болезнь — крапивница, артралгия, артрит, лимаденопатия, лихорадка

4) клеточные механизмы иммунитета – сенсибилизирующие Т-лимфоциты и макрофаги – контактный дерматит.

Идиосинкразия — болезненная реакция, возникающая у отдельных людей на раздражители, которые у большинства других не вызывают подобных явлений. В основе лежит или врождённая повышенная чувствительность ВНС к определенным раздражителям, или реакция, возникающая в организме в результате повторных слабых воздействий некоторых веществ, не способных вызывать в организме выработку антител. И. отличается от аллергии тем, что может развиваться и после первого контакта с непереносимым раздражителем.

Токсические эффекты: ↓слуха, вестибулярные расстройства, слепота, нарушение проведения возбуждения по миокарду, поражения печени, нарушения кроветворения, угнетение центров продолговатого мозга.

Передозировка – превышение мах переносимых доз (случайная, сознательная).

Тератогенное действие – во время беременности (фокомелия-ластоподобные конечности, амелия — отсутствие конечностей, гемангиомы на лице, аномалии ЖКТ).

Эмбриотическое действие – до 12 нед.беременности.

Фенотоксическое действие – поздние сроки.

Мутагенность – способность веществ вызывать стойкое повреждение зародышевой клетки и ее генетического аппарата, изменение генотипа потомства.

Канцерогенность – способность веществ вызывать развитие злокачественных опухолей.

Общие признаки лечения острых отравлений лекарственными средствами:

1)задержка всасывания токсического вещества в кровь (рвота, промывание желудка, кишечника, адсорбция)

2)удаление токсического вещества из организма (форсированный диурез, гемодиализ, перитонеальный диализ, гемосорбция, замещение крови, плазмоферез, лимфодиализ, лимфосорбция)

3)устранение действия всосавшегося токсического вещества (антидоты, антагонисты)

4) симптоматическая терапия (поддержание дыхания и кровообращения), комплекс детоксикационных мероприятий, реанимационная терапия)

5)профилактика острых отравлений (предупреждение, правильные выписка и хранение, прием по назначению врача, строгость доз).

Зависимость фармакотерапевтического эффекта от свойств лекарственных средств и условий их применения, физико-химические свойства, дозы и концентрации, повторное применение лекарственных средств.

Св-ва лек.ср-в обусл.их хим.строен.,налич.функц-но актив.групир.,формой и размер.их мол-л.Для эф-го взаим.в-ва с рец-ром необх.такая стр-ра лек.в-ва,кот.обеспеч.наиб.тесный контактего с рец-ром. От степени сближен.в-ва с рец-ром завис.прочн.межмол.св.Для взаим.в-ва с рец-ром н. их простр.соответ.,т.е.комплементарность.Если в-во и.неск.функц.акт.группир.,то необх.учитыв.расстоян.м/у ними.Выясн-е завис. м/у хим.стр.в-в и их биол.активн.явл.одним из наиб.важн.направл.в созд.новых препаратов.Многие колич.и качест.хар-ки действ.зав.от таких физ.-хим. и физ.св-в,как раствор-ть в воде/липидах,для порошкообр.соед. – от степени измельчен.,для летуч.в-в – от степени их летучести и т.д. Очень важна степень диссоц.

Гидрофильные соеденения проникают внутрь капилляра через поры мембраны благодаря фильтрации, а липофильные- путем простой диффузии. Из капилляра в межкл жидкость- теми же механизмами. Из нее липофильные в клетки путем диффузии, а гидрофильные активным тр-ом. Некоторые препараты связываются с белками крови(альбумины). После распада этого комплекса в-во оказывает свое д-е. Сам комплекс фарм неактивен. Существует зависимость д-я от стериоизомера, кол-ва ф-но активных группировок и др.

Пороговая – это минимальная доза ЛС, которая вызывает какой-либо биологический эффект.

Среднетерапевтическая – доза препарата, которая вызывает оптимальный лечебный эффект.

Высшая терапевтическая – доза, которая вызывает наибольший фармакологический эффект.

Широта терапевтического действия – это интервал между пороговой и высшей терапевтической дозами.

Токсическая — доза, при которой возникают симптомы отравления.

Смертельная – доза, которая вызывает смерть.

Разовая – pro dosi – доза на один прием.

Курсовая – доза на курс лечения.

Ударная – доза, назначаемая в начале лечения, которая превышает среднетерапевтическую в 2-3 раза и назначается с целью быстрого достижения

необходимой концентрации ЛС в крови или других биосредах.

Поддерживающая – доза, назначаемая после ударной, и она соответствует, как правило, среднетерапевтической.

Действие лекарств при их повторном введении в организм.

При повторном применении эффективность лекарственных средств может изменятся как в сторону повышения, так и в сторону снижения. Возникают

Повышение фармакологического эффекта связано с его способностью к кумуляции. Кумуляция (cumulatio) – это усиление действия ЛС при их повторном введении в организм.

Кумуляция бывает двух видов: материальнаяи функциональная.

Материальная кумуляция – реализуется, когда увеличение лечебного эффекта происходит за счет накопления в организме ЛС.

Функциональная кумуляция – это когда увеличение лечебного эффекта и появление симптомов передозировки происходит быстрее, чем накопление в

организме самого препарата.

Привыкание – это снижение фармакологической активности препарата при его повторном введении в организм.

Перекрестное привыкание – это привыкание к препаратам, сходного (близкого) химического строения

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Студент — человек, постоянно откладывающий неизбежность. 10883 — | 7402 — или читать все.

188.64.174.65 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

Ссылка на основную публикацию
Adblock
detector