0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Состав и основные свойства

Понятие системы, ее основные свойства

АВТОМАТИЗИРОВАННЫЕ ЭКОНОМИЧЕСКИЕ ИНФОРМАЦИОННЫЕ СИСТЕМЫ.

В современной научно-технической литературе дается множество определений понятию «система». Наиболее полное определение звучит следующим образом:

Система совокупность элементов, связанных между собой и с внешней средой упорядоченным образом, выбранных с определенной целью и выполняющих заданную функцию, направленную на получение конкретного полезного результата. Это определение требует дополнительного пояснения:

совокупность элементов… — понимается в прямом смысле, т.е. различные элементы сведены вместе, чтобы сформировать систему;

связанных между собой… — предполагает, что элементы имеют некоторое влияние друг на друга, проистекающее из принадлежности к системе;

с внешней средой… — предполагается наличие границ в системе, устанавливающих деление на внешнюю и внутреннюю среду;

упорядоченным образом… — подразумевает, что взаимодействия между элементами не случайные, а подчиняются некоторым правилам, которые можно познать;

выбранных с определенной целью … — сосредотачивает внимание на роли наблюдателя, который определил систему, установив границу так, что какие-то элементы входят в систему, а какие-то относятся к внешней среде, при этом границы устанавливаются на основе какой-то идеи;

выполняющих заданную функцию… — системы не существуют просто так, они обычно имеют свое предназначение (функции);

направленную на получение конкретного полезного результата… — любая система любого масштаба функционирует с целью получения заданного результата.

В соответствии с этим определением практически каждый экономический объект можно рассматривать как систему, стремящуюся в своем функционировании к достижению определенной цели. В качестве примера можно назвать систему образования, энергетическую, транспортную, производственную систему и т.д.

Для системы характерны следующие основные свойства:

Сложность системы зависит от множества входящих в нее компонентов, их взаимодействия, а также от сложности внешних и внутренних связей.

Делимость системы означает, что в зависимости от точки зрения на нее она может быть разделена на подсистемы, каждая из которых выполняет свою функцию.

Целостность системы означает, что множество подсистем функционирует с единой общей целью.

Многообразие элементов означает, что в систему могут быть объединены элементы различной природы. Например, производственная система может состоять из таких элементов, как сырье, готовая продукция, средства производства, финансовые, трудовые ресурсы и т.д.

Структурированность системы означает наличие определенных связей между элементами, распределение элементов по уровням иерархии.

Для того чтобы система выполняла заданную функцию и при этом достигала требуемого результата, необходимо ею управлять. Для управления сложными системами существуют системы управления. Важнейшими функциями этих систем являются:

Рисунок. – Схема системы управления с обратной связью.

Управление связано с обменом информацией между компонентами системы, а также системы с внешней средой. В процессе управления получают сведения о состоянии системы в каждый момент времени, о достижении (или не достижении) заданной цели с тем, чтобы воздействовать на систему и обеспечить выполнение управленческих решений.

Таким образом, любой системе управления экономическим объектом соответствует своя информационная система, называемая экономической информационной системой.

Экономический объект– это объект управления, представляющий собой совокупность взаимодействующих, относительно автономных систем, выполняющих множество преобразований экономической информации.

Экономическая информация – совокупность сведений экономического характера, которые можно подвергать обработке в процессах планирования, учета, анализа, контроля на всех уровнях управления экономическим объектом.

Экономическая информация обладает рядом особенностей по сравнению с общей массой информации:

1. в основной своей массе она имеет дискретную форму представления; выражается в цифровом или алфавитно-цифровом виде;

2. отражается на материальных носителях (документах, магнитных лентах и дисках);

3. ее большие объемы обрабатываются в установленных временных пределах, зависящих от конкретных функций, чаще всего циклическая регулярная обработка;

4. исходная информация, возникающая в одном месте, находит свое отражение в различных функциях управления и в связи с этим подвергается различной обработке несколько раз, что требует многократной перегруппировки данных;

5. объемы исходной информации достигают больших размеров при относительно малом числе операций ее обработки;

6. исходные данные и результаты расчета, а иногда и промежуточные результаты подлежат длительному хранению.

Исходя из особенностей экономической информации она характеризуется следующими свойствами:

Таким образом, можно дать следующее определение экономической информационной системы.

ЭИС совокупность внутренних и внешних информационных потоков экономического объекта, методов, средств, специалистов, участвующих в процессах обработки экономической информации и принятия управленческих решений.

Информационная система является системой информационного обслуживания работников управленческих служб и выполняет технологические функции по накоплению, хранению, передаче и обработке информации. Она формируется в соответствии с регламентом, принятым на конкретном экономическом объекте, оказывает помощь в реализации целей и задач, стоящих перед ним.

Для повышения эффективности систем управления экономическими объектами используются новейшие технические, технологические и программные средства. Следует заметить, что ЭИС можно реализовать и без использования вышеупомянутых средств, но отдача от такой системы будет значительно ниже. Если же применять такие средства, то следует говорить об автоматизированной экономической информационной системе (АЭИС).

АЭИС – совокупность информации, экономико-математических методов и моделей, технических, технологических и программных средств и специалистов, предназначенная для обработки экономической информации и принятия управленческих решений.

Создание АЭИС способствует повышению эффективности экономического объекта и обеспечивает повышение качества управления.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Увлечёшься девушкой-вырастут хвосты, займёшься учебой-вырастут рога 10016 — | 7791 — или читать все.

188.64.174.65 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

Билет 15. Состав и основные свойства стекла.

Все твердые тела делят на кристаллические и аморфные. Аморфные имеют неупорядоченную структуру и могут плавиться при достаточно высокой температуре. В науке стеклом принято называть все аморфные тела, которые образуются в результате переохлаждения расплава.

Стеклом в обыденной жизни называют прозрачный хрупкий материал. В зависимости от того или иного компонента, входящего в состав исходной стекломассы, в промышленности различают следующие виды стекла: силикатные, боратные, боросиликатные, алюмосиликатные, бороалюмосиликатные, фосфатные и другие.

Базовый метод получения стекла заключается в плавлении смеси кварцевого песка (SiO2), соды (Na2CO3) и извести (CaO). В результате получается химический комплекс с составом Na2O*CaO*6SiO2.

Физические, механические и химические свойства стекла:

Плотность стекол зависит от компонентов, входящих в их состав. Так, стекломасса, в больших количествах включающая оксид свинца, более плотная по сравнению со стеклом, состоящим помимо прочих материалов и из оксидов лития, бериллия или бора.

Прочность на сжатие — способность материала сопротивляться внутренним напряжениям при воздействии извне каких-либо нагрузок. При этом степень прочности того или иного вида стекла зависит от химического вещества, входящего в его состав. Более прочны стекла, включающие в свой состав оксиды кальция или бора. Низкой прочностью отличаются стекла с оксидами свинца и алюминия. Различные повреждения (трещины, глубокие царапины) значительно снижают величину прочности материала. Для искусственного увеличения показателя прочности поверхность некоторых стеклоизделий покрывают кремнийорганической пленкой.

Хрупкость — механическое свойство тел разрушаться под действием внешних сил. Величина хрупкости стекла в основном зависит не от химического состава образующих его компонентов, а в большей степени от однородности стекломассы (входящие в его состав компоненты должны быть беспримесными, чистыми) и толщины стенок стеклоизделия.

Твердость — механическое свойство одного материала сопротивляться проникновению в него другого, более твердого. Определить степень твердости того или иного материла можно с помощью специальной таблицы-шкалы, отражающей свойства некоторых минералов, которые расположены по возрастающей, начиная с менее твердого, талька, твердость которого взята за единицу, и заканчивая самым твердым — алмазом с твердостью в 10 условно принятых единиц.Степень твердости того или иного вида стекла в основном зависит от химического состава входящих в него компонентов. Так, использование при создании стекломассы оксида свинца значительно снижает твердость стекла. И, напротив, силикатные стекла достаточно плохо поддаются механической обработке.

Теплоемкость — свойство тел принимать и сохранять определенное количество теплоты при каком-либо процессе без изменения состояния. Теплоемкость стекла прямо зависит от химического состава компонентов, входящих в состав исходной стекломассы. Чем выше в стекломассе содержание оксидов свинца и бария, тем ниже показатель теплопроводности. А легкие оксиды, такие, например, как оксид лития, способны повысить теплопроводность стекла. Стекло с низкой теплоёмкостью остывает намного медленнее.

Теплопроводность — свойство тел пропускать через себя теплоту от одной поверхности до другой, при условии, что у них разная температура. Стекло плохо проводит тепло. Причем наиболее высокий показатель теплопроводности отмечен у кварцевого стекла. С уменьшением доли оксида кремния в общей массе стекла или при замене его на любое другое вещество уровень теплопроводности понижается.

Температура начала размягчения — это температура, при которой аморфное тело начинает размягчаться и плавиться. Самое твердое — кварцевое — стекло начинает деформироваться только при температуре 1200-1500 °С. Другие типы стекол размягчаются уже при температуре 550-650 0С. Величина температуры начала плавления того или иного сорта и вида стекла определяется химическим составом компонентов. Так, тугоплавкие оксиды кремния или алюминия повышают температурный уровень начала размягчения, а легкоплавкие (оксиды натрия и калия), напротив, понижают.

Тепловое расширение — явление расширения размеров того или иного тела под воздействием высоких температур. Материалы для отделок следует подбирать так, чтобы величина их теплового расширения соответствовала тому же показателю стекломассы основного изделия. Коэффициент теплового расширения стекол прямо зависит от химического состава исходной массы. Чем больше в стекломассе щелочных оксидов, тем выше показатель температурного расширения, и, наоборот, присутствие в стекле оксидов кремния, алюминия и бора снижает эту величину.

Термостойкость — способность стекла не поддаваться коррозии и разрушению в результате резкой смены внешней температуры. Этот коэффициент зависит не только от химического состава массы, но и от размера изделия, а также от величины теплоотдачи на его поверхности.

Химическая стойкость — способность того или иного тела не поддаваться воздействию воды, растворов солей, газов и влаги атмосферы. Показатели химической стойкости зависят от качества стекломассы и воздействующего агента. Так, стекло, не подвергающееся коррозии при действии воды, может деформироваться при воздействии щелочных и солевых растворов.

Преломление света — изменение направления светового луча при его прохождении через границу двух прозрачных сред. Величина, показывающая преломление света стекла, всегда больше единицы.

Отражение света — это возвращение светового луча при его падении на поверхность двух сред, имеющих различные показатели преломления.

Дисперсия света — разложение светового луча в спектр при его преломлении. Величина дисперсии света стекла прямо зависит от химического состава материала. Наличие в стекломассе тяжелых оксидов увеличивает показатель дисперсии.

Поглощение света – способность той или иной среды уменьшать интенсивность прохождения светового луча. Показатель поглощения света стекол невысок. Он увеличивается лишь при изготовлении стекла с применением различных красителей, а также особых способов обработки готовых изделий.

Рассеяние света — это отклонение световых лучей в различных направлениях. Показатель рассеяния света зависит от качества поверхности стекла. Так, проходя сквозь шероховатую поверхность, луч частично рассеивается, и потому такое стекло выглядит полупрозрачным.

Читать еще:  Препараты для восстановления печени после алкоголя
|следующая лекция ==>
|Понятие коэффициентов технической готовности ,выпуска и использование автомобилей

Дата добавления: 2017-02-11 ; просмотров: 1033 | Нарушение авторских прав

Состав – структура – свойства

Основы материаловедения

Курс лекций по дисциплине

«Материаловедение и материалы электронных средств»

специальность 210201 «Проектирование и технология РЭС»

Автор: доцент каф. наноинженерии к.т.н. Архипов А.В.

Вещество – совокупность взаимосвязанных атомов, ионов или молекул.

Материал – один из видов вещества, который идёт на изготовление изделия и представляет собой промежуточный продукт переработки вещества в изделие. Этот продукт, как правило, отвечает потребностям конкретного производственного процесса, имеет сложный химический состав и (или) наперёд заданную внутреннюю структуру и внешнюю форму.

· вещество – железо, медь, кремний, полиэтилен, глинозём;

· материал – сталь (стальной прокат), медная фольга, полиэтиленовая плёнка, корундовая керамика.

В физике используют понятие твёрдое тело, понимая под этим вещество в твёрдом состоянии.

Содержание предмета материаловедение можно отразить общей формулой:

Все простые вещества в соответствии с положением в периодической таблице элементов Менделеева делятся на металлы (80 элементов), полуметаллы и неметаллы.

Лишь немногие из металлов применяются в технике в элементарном виде.

Например, для реализации хорошей электропроводности: серебро Ag, медь Cu, золото Au, платина Pt, палладий Pd.

В основном, металлы используются в виде сплавов. Их количество огромно, свойства разнообразны, вследствие чего, создание новых сплавов является актуальной задачей.

Среди полуметаллов особое значение имеют элементарные полупроводники (13 элементов), такие как кремний Si, германий Ge, селен Se, серое олово Sn, углерод С в структуре алмаза с примесями и т.д.

Неметаллы (12 элементов) в элементарном виде практически не используются. 9 элементов из них – газы , 1 (Br) – жидкость, 2 (S, I) – летучие легкоплавкие элементы.

Однако, значение неметаллов огромно, так как в соединениях с металлами они образуют всё многообразие простых и сложных неорганических химических соединений с новыми, неприсущими исходным веществам, свойствами, которые и являются материалами РЭС.

Существует 4 типа связи:

Ионная связь – отличается присвоением одним из элементов химического соединения валентных электронов второго.

Ковалентная связь – характеризуется равномерным распределением валентных электронов между атомарными остовами веществ, составляющих соединение.

Металлическая связь – характеризуется наиболее полным обобществлением валентных электронов. У металлов кристаллические решётки «погружены» в электронный газ.

Молекулярная связь – является наиболее слабой. Она обусловлена кулоновским взаимодействием между разно заряженными участками молекул.

В чистом виде химические связи практически не встречаются. Наблюдаются смешанные: ионно-ковалентная, ковалентно — металлическая.

Понятие структура имеет 4 аспекта:

1. Степень упорядоченности в расположении микрочастиц.

2. Особенности их взаимного расположения.

3. Вид и концентрация кристаллических дефектов (дефектоструктура).

4. Состав и строение фаз.

По степени упорядоченности различают тела кристаллические и аморфные.

Кристалл – твёрдое тело, имеющее трёхмерное периодически правильное пространственное расположение микрочастиц, то есть дальний порядок.

Аморфное тело – тело, не располагающее дальним порядком. Однако считать аморфные тела хаотическими, неструктурированными – не правильно. В них наблюдается ближний порядок в расположении микрочастиц.

Границей, условно разделяющей кристаллические и аморфные тела, принято считать метод исследования упорядоченности структуры.

Существует рентгеноструктурный анализ, позволяющий засечь (найти) кристаллиты (упорядоченные области) в структуре материала размером 100 нм. Поэтому, применив этот метод, и не найдя признаков упорядоченности, говорят, что данное тело рентгеноаморфно.

Монокристалл – единичный относительно крупный кристалл с совершенной структурой, заданными свойствами и полученный, как правило, искусственным путём.

Поликристалл – совокупность неориентированных относительно друг друга зёрен кристаллитов. При этом кристаллиты не являются монокристаллами, так как они не единичны, малы, их структура, как правило, искажена.

Свойства монокристалла в основном определяются природой вещества, а свойства поликристалла, помимо этого, зависят от размера кристаллитов, состава и структуры границ зёрен.

Граница зёрен – нарушение периодичности расположения микрочастиц, сопровождающееся появлением оборванных, ненасыщенных связей, которые сильно влияют на механические, химические и физические свойства материалов, в том числе и на электропроводность.

Порядки величин удельного сопротивления если принять удельное сопротивление монокристаллического проводника за единицу, то:

ρмонокристалла – 1, ρполикристалла – 10, ρаморфного тела – 100

Особенности взаимного расположения микрочастиц

Эти особенности изучает предмет кристаллография.

Минимальный повторяющийся объём кристаллический структуры называется элементарной ячейкой. Размер элементарной ячейки (период повторения) называется параметром элементарной ячейки.

Установлено 14 типов элементарных ячеек, которые различаются размерами рёбер, углами между рёбрами и т.д.

Доказано, что другие геометрические тела не могут обеспечить полного заполнения.

Все типы пространственных решёток разбиты на 7 сингоний. Наиболее распространенной в природе является кубическая сингония, в которой различают несколько видов решеток, например, на рисунке 1.

Рисунок 1 — Виды кубических решёток

а) – простая; б) — гранецентрированная (ГЦК); в) — объёмноцентрированная (ОЦК).

Рисунок 2. Гексагональная кристаллическая решётка

Рисунок 3. Тригональная кристаллическая решётка

Ag, Al, Au, Pt, Pb, Cu, некоторые сложные полупроводниковые соединения (GaAs)– ГЦК;

элементарные полупроводники (Si, Ge) – алмазоподобная кубическая решётка.

Если кристалл имеет форму естественного правильного многогранника, легко установить, что свойства различных граней неодинаковы, то есть имеет место анизотропия.

В кубической кристаллической решётке простыми (сингулярными) гранями являются представленные на рисунке 4.

Рисунок 4 – Сингулярные грани кубической сингонии

Вполне очевидно, что плотность расположения атомов даже на простых сингулярных гранях различна. В порядке убывания плотности: (1,1,1); (1,0,0); (1,1,0).

До сих пор речь шла об идеальной решётке. На практике можно утверждать: идеальных кристаллов не существует ни в природе, ни в технике.

Всё многообразие существующих дефектов структур можно разбить на два класса:

I Динамические (временные) дефекты. Оказывают существенное влияние, на них нельзя повлиять. Пример: фононы – кванты тепловой энергии – элементарное колебание атома в решётке. Отсутствие данного дефекта возможно только при 0° К.

II Статические (постоянные) дефекты. Их классифицируют по геометрическому признаку:

1. Точечные, 0-мерные. Являются самыми маленькими и распространёнными (вакансии, междоузельные атомы, примесные атомы)

2. Линейные, 1-мерные. К ним относят различные виды дислокаций: винтовые, сдвиговые, несовпадения и другие. Вследствие возникновения внутри кристаллической решётки протяжённого ряда атомов с оборванными связями образуется дислокационная пора, пронизывающая весь кристалл (рисунок 5).

Рисунок 5. Сдвиговая дислокация

3. Плоскостные, 2-мерные. Наиболее большим дефектом кристалла является его поверхность. Также к плоскостным дефектам относятся границы зёрен в поликристаллической структуре вещества (рисунок 6). Возможно возникновение границы двойникования, при переходе через которую наблюдается зеркальное отображение структуры кристаллической решётки (рисунок 7).

Рисунок 6 Рисунок 7

4. Объёмные, 3-мерные. К ним относятся трещины, сколы, макропустоты, макровключения иной фазы.

Практически все статические дефекты сопровождаются оборванными связями, которые стремятся к завершению. Таким образом, дефекты оказывают существенное влияние на движение носителей заряда, так как фактически представляют собой своего рода микро- и наноконденсаторы, накапливающие заряд и разряжающиеся при смене полярности. Это приводит к увеличению времени быстродействия переходных процессов и, соответственно, к ограничению быстродействия.

Состав и строение фаз

Данный аспект лучше всего иллюстрируется теорией сплавов.

Дата добавления: 2014-01-05 ; Просмотров: 1302 ; Нарушение авторских прав? ;

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Виды, состав и основные свойства клеев

Клей— это природное или синтетическое вещество, применяемое для соединения различных материалов за счет образования адгезионной связи клеевой пленки с поверхностями склеиваемых материалов.

По физическому состоянию клей представляет собой жидкости различной вязкости (жидкие мономеры, растворы, суспензии и эмульсии), пленки, порошки или прутки, расплавляемые перед употреблением или наносимые на горячие поверхности.

В группу природных клеев входят животные или белковые (глютиновые, ка­зеиновые, альбуминовые), растительные (на основе жмыхов и шротов масляничных и бобовых растений, природных смол, натурального каучука, крахмала, декстрина), минеральные (силикатные, асфальтовые, битумные). Из природных клеев в производстве мебели, фанеры и строительных конструкций используются (незначительно) клеи животного происхождения.

Синтетические клеи вырабатывают на основе синтетических смол, которые получают из простых веществ в результате сложных химических процессов.

Клеи состоят из основного клеевого вещества растворителя и вспомога­тельных веществ.

Растворители применяют для растворения основного клеевого вещества и доведения его до определенной концентрации. К растворителям относятся вода, спирт, водные растворы щелочей, органические растворители.

Вспомогательные вещества разделяются на клееобразователи, наполнители, катализаторы, отвердители, стабилизаторы, дубители, антисептики, пласти­фикаторы и вспенивающие вещества.

Клееобразователи способствуют переходу основного клеевого вещества в состояние раствора. К ним относятся: жидкое стекло, едкий натр, известь, аммиак.

Наполнителями называют вещества, применяемые для уменьше­ния расхода основного клеевого вещества и уменьшения просачивания клея на лицевую поверхность, а также усадочных явлений в клеевом шве. В качестве на­полнителя применяются древесная мука, гипс и др.

Катализаторы — вещества, применяемые для ускорения процесса смолообразования при производстве синтетических смол. К катализаторам относят неорганические и органические кислоты, соли этих кислот, сульфонафтеновые кислоты, щелочи.

Отвердителями называют вещества, применяемые для более ускоренного перевода смоляных клеев в твердое нерастворимое и неплавкое состояние. Для феноло-формальдегидных смол холодного отверждения — это керосиновый контакт или сульфонафтеновые кислоты, а для мочевиноформальдегидных — хлористый аммоний и слабые кислоты (щавелевая, молочная, муравьиная).

Стабилизаторы — вещества, помогающие сохранять клеящие свойства клеев, концентрацию в течение определенного времени. В качестве ста­билизаторов используют ацетон, этиловый спирт, органические растворители.

Дубители придают клеям водостойкость. К ним относятся уротропин, формалин, медные соли.

Антисептики — ядовитые вещества, убивающие микроорга­низмы и придающие клеевым веществам биологическую стойкость. В качестве таких веществ используют фенол, крезол, формалин, сульфонафтеновые кислоты, фтористый натр.

Пластификаторы используют преимущественно в смоляных клеях для придания им пластичности и снижения хрупкости клеевого шва.

Вспенивающие вещества применяют для вспенивания карбамидных смол с целью их экономного использования. Наиболее распространен­ное и дешевое вспенивающее вещество — пылевидный альбумин.

Клеи должны отвечать следующим требованиям: прочно склеивать, быть простыми в употреблении, иметь жизнеспособность и большой срок хранения; быть водостойкими (для изделий, работающих в условиях высокой влажности) и биостойкими (сопротивляться разрушительной деятельности микроорга­низмов); не разрушать волокно древесины и не изменять ее естественной окра­ски; быть сравнительно дешевыми, не вызывать затупления режущих инструментов при обработке склеенных материалов; быть безвредными для человеческого организма и не воспламеняться.

Адгезией, или прилипанием, называют связь между поверхностями двух разнородных жидких или твердых тел. Хорошей адгезией к древесине и древесностружечным плитам обладают клеи животного происхождения и карбамидные. Их применяют при облицовывании, изготовлении мебельных щитов и плит.

Прочность клеевых соединений характеризуется пределом прочности клеевого шва. Все клеи, применяемые для склеивания древесины, образуют соединения, прочность которых при испытании на склеивание должна соответствовать установленнымтехническим условиям (на изготовление мебели упри облицовывании должна быть не менее 10 кгс /см 2 , в остальных случаях склеивания — не менее 20 кгс/см 2 ).

Вязкостью называет внутреннее трение, проявляющееся при взаимном перемещении частиц жидкости (раствора). Вязкость клея указывает на возможность его применения для различных видов склеивания (рабочая вязкость). Показателем условий вязкости является отношение времени истечения (в с) 200 см 3 клеевого раствора стандартной концентрации и темпера­туры через сопло вискозиметра ко времени (в с) истечения такого же количества дистиллированной воды при температуре 20°С.

Клеи пониженной вязкости легко впитываются древесиной, отчего прочность клеевого соединения снижается. С у сличением вязкости клея до определенных пределов, различных для разных типов клеев, их; пропитывающая способность снижается, и прочность соединения повышается. Клеи с повы­шенной вязкостью трудно наносить на поверхности, они, как правило, образуют толстый малопрочный клеевой слой.

Читать еще:  Хилак форте состав свойства показания способ примения

Концентрацией клеевого раствора называют процентное содержание в нем товарно-сухого клея, а в смоляных клеях — сухих веществ и выражают в процентах от массы раствора. Чем больше концентрация клеевого раствора, тем выше его вязкость.

Водостойкость — свойство клея не снижать прочности клеевого соедине­ния при воздействии на него влаги.

По водостойкости клеи делятся на клеи повышенной влагостойкости, водостойкие и ограниченно водостойкие.

К водостойким относятся большинство синтетических клеев, ограниченно водостойки казеиновые, совершенно неводостойкие глютиновые клеи.

Жизнеспособность клеев характеризуется временем, в течение которого клеевой раствор пригоден для использования. Жизнеспособность клеев, кроме глютиновых, находится в пределax от 2 до 8 ч. По истечении этого срока они гу­стеют, вследствие чего клеящая способность клеев снижается и затрудняет их нанесение на поверхность деталей. Жизнеспособность глютиновых клеев — несколько суток. Загустевший клей подогревают.

Просачивание клея сквозь древесину, а также изменение цвета древесины от клея обычно наблюдается при облицовывании шпоном. Просачивание представляет собой образование клеевых пятен на наружном слое шпона в результате проникновения клея из нижерасположенного клеевого слоя. Такие явления происходят из-за недостаточной вязкости и густоты раствора, избыточного давления при облицовывании, наличия кислот и щелочей в древесине или клее.

Биологическая стойкость клеев различина. Клеи органического происхожде­ния представляют собой при благоприятных условиях хорошую питательную среду для микроорганизмов. Такие клеи легко поражаются бактериями и грибами, что резко снижает прочность клеевого соединения. К грибостойким относятся синтетические клеи.

Схватываемость (скорость застудневания, затвердевания) зависит от вида и состава клея. Схватываемость животных клеев зависит от температуры склеивания и скорости испарения воды из клеевого шва. Превращение синтетических клеев в твердое нерастворимое состояние происходит вследствие химической реакции, под влиянием высокой температуры реакция протекает быстрее.

По внешнему виду различают клеи жидкие, порошкообразные и пленочные.

По реакционной способности клеи могут быть термореактивные (необратимые) и термопластичные (обратимые). Термореактивные клеи под влиянием тепла и катализатора переходят из жидкого состояния в твердое, не­растворимое и необратимое состояние (смолы резольные, мочевинные и меламиновые). Термопластичные клеи способны под влиянием тепла расплав­ляться, а после охлаждения вновь затвердевать, не изменяя химического состава. При последующем нагревании такие клеи снова расплавляются, например, мездровый и костный клеи, новолачные смолы, клеи «расплавы».

Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого.

Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ — конструкции, предназначен­ные для поддерживания проводов на необходимой высоте над землей, водой.

Папиллярные узоры пальцев рук — маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни.

Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим.

Откуда берется нефть: теории происхождения нефти, ее состав и основные свойства

Нефтяные месторождения — уникальное хранилище энергии, образованной и накопленной на протяжении миллионов лет в недрах нашей планеты. В этом материале — о том, какой путь проделала нефть, прежде чем там оказаться, из чего она состоит и какими свойствами обладает

Две гипотезы

У ученых до сих пор нет единого мнения о том, как образовалась нефть. Существуют две принципиально разные теории происхождения нефти. Согласно первой — органической, или биогенной, — из останков древних организмов и растений, которые на протяжении миллионов лет осаждались на дне морей или захоронялись в континентальных условиях. Затем перерабатывались сообществами микроорганизмов и преобразовывались под действием температуры и давлений в результате тектонического опускания вглубь недр, формируя богатые органическим веществом нефтематеринские породы.

Необходимые условия для превращения органики в нефть возникают на глубине в так называемом нефтяном окне — при температуре от 70 до 190°C. В верхней его части температура недостаточно высока — и нефть получается «тяжелой»: вязкой, густой, с высоким содержанием смол и асфальтенов. Внизу же температура пластов поднимается настолько, что молекулы органического вещества дробятся на самые простые углеводороды — образуется природный газ. Затем под воздействием различных сил, в том числе градиента Градиент давления характеризует степень изменения давления в пространстве, в данном случае — в зависимости от глубины пласта давления, углеводороды мигрируют из нефтематеринского пласта в выше- или нижележащие породы.

60 млн лет может занимать природный процесс образования нефти из органических останков

Природный процесс образования нефти из органических останков занимает в среднем от 10 до 60 млн лет, но если для органического вещества искусственно создать соответствующий температурный режим, то на его переход в растворимое состояние с образованием всех основных классов углеводородов достаточно часа. Подобные опыты сторонники органической гипотезы толкуют в свою пользу: преобразование органики в нефть налицо. В пользу биогенного происхождения нефти есть и другие аргументы. Так, большинство промышленных скоплений нефти связано с осадочными породами. Мало того — живая материя и нефть сходны по элементному и изотопному составу. В частности, в большинстве нефтяных месторождений обнаруживаются биомаркеры, такие как порфирины — пигменты хлорофилла, широко распространенные в живой природе. Еще более убедительным можно считать совпадение изотопного состава углерода биомаркеров и других углеводородов нефти.

Состав и свойства нефти

ХАРАКТЕРИСТИКИ НЕФТИ МОГУТ ЗНАЧИТЕЛЬНО РАЗЛИЧАТЬСЯ ДЛЯ РАЗНЫХ МЕСТОРОЖДЕНИЙ

Основные химические элементы, из которых состоит нефть: углерод — водород — и сера — до 7%. Последняя обычно присутствует в виде сероводорода или меркаптанов, которые могут вызывать коррозию оборудования. Также в нефтях присутствует до 1,7% азота и до 3,5% кислорода в виде разнообразных соединений. В очень небольших количествах в нефтях содержатся редкие металлы (например, V, Ni и др.).

От месторождения к месторождению характеристики и состав нефти могут различаться очень значительно. Ее плотность колеблется от 0,77 до 1,1 г/см³. Чаще всего встречаются нефти с плотностью кипения варьирует от 30 до 600°C в зависимости от химического состава. На этом свойстве основана разгонка нефтей на фракции. Вязкость сильно меняется в зависимости от температуры. Поверхностное натяжение может быть различным, но всегда меньше, чем у воды: это свойство используется для вытеснения нефти водой из пор пород-коллекторов.

Большинство ученых сегодня объясняют происхождение нефти биогенной теорией. Однако и неорганики приводят ряд аргументов в пользу своей точки зрения. Есть различные версии возможного неорганического происхождения нефти в недрах земли и других космических тел, но все они опираются на одни и те же факты. Во-первых, многие, хотя и не все месторождения связаны с зонами разломов. Через эти разломы, по мнению сторонников неорганической концепции, нефть и поднимается с больших глубин ближе к поверхности Земли. Во-вторых, месторождения бывают не только в осадочных, но также в магматических и метаморфических горных породах (впрочем, они могли оказаться там и в результате миграции). Кроме того, углеводороды встречаются в веществе, извергающемся из вулканов. Наконец, третий, наиболее весомый аргумент в пользу неорганической теории состоит в том, что углеводороды есть не только на Земле, но и в метеоритах, хвостах комет, в атмосфере других планет и в рассеянном космическом веществе. Так, присутствие метана отмечено на Юпитере, Сатурне, Уране и Нептуне. На Титане, спутнике Сатурна, обнаружены реки и озера, состоящие из смеси метана, этана, пропана, этилена и ацетилена. Если на других планетах Солнечной системы эти вещества могут образовываться без участия биологических объектов, почему это невозможно на Земле?

С точки зрения современных сторонников неорганической, или минеральной, гипотезы, углеводороды образуются из содержащихся в мантии Земли воды и углекислого газа в присутствии закисных соединений металлов на глубинах Высокое давление в недрах земли препятствует термической деструкции сложных молекул углеводородов. В свою очередь сторонники органики не отрицают, что простые углеводороды, например метан, могут иметь и неорганическое происхождение. Опыты, направленные на подтверждение абиогенной теории, показали, что получаемые углеводороды могут содержать не более пяти атомов углерода, а нефть представляет собой смесь более тяжелых соединений. Этому противоречию объяснений пока нет.

Этапы образования нефти

СТАДИИ ОБРАЗОВАНИЯ ОСАДОЧНЫХ ПОРОД И ПРЕОБРАЗОВАНИЯ НЕФТИ

  • осадконакопление (седиментогенез) — в процессе накопления осадка остатки живых организмов выпадают на дно водных бассейнов или захороняются в континентальной обстановке;
  • биохимическая (диагенез) — происходит уплотнение, обезвоживание осадка и биохимические процессы в условиях ограниченного доступа кислорода;
  • протокатагенез — опускание пласта органических остатков на глубину до при медленном подъеме температуры и давления;
  • мезокатагенез, или главная фаза нефтеобразования (ГФ Н), — опускание пласта органических остатков на глубину до при подъеме температуры до 150°C. При этом органические вещества подвергаются термокаталитической деструкции, в результате чего образуются битуминозные вещества, составляющие основную массу микронефти. Далее происходит «отжим» нефти за счет перепада давления и эмиграционный вынос микронефти в пласты-коллекторы, а по ним — в ловушки;
  • апокатагенез керогена, или главная фаза газообразования (ГФГ ), — опускание пласта органических остатков на глубину (как правило, более 4,5 км) при подъеме температуры до 180—250°C. При этом органическое вещество теряет нефтегенерирующий потенциал и генерирует газ.

В ловушке

Помимо чисто научного интереса гипотезы, объясняющие происхождение нефти и газа, имеют еще и политическое звучание. Действительно, раз уж нефть может получаться из неорганических веществ и темпы ее образования не десятки миллионов лет, как предполагает биогенная концепция, а во много тысяч раз выше, значит, проблема скорого исчерпания запасов становится как минимум не столь однозначной. Однако для нефтяников вопрос о том, откуда берется нефть, принципиален скорее с той точки зрения, может ли теория предсказать, где именно нужно искать месторождения. С этой задачей органики справляются лучше.

В сугубо прагматическом отношении для добычи важно знать даже не то, где нефть зародилась, а где она находится сейчас и откуда ее можно извлечь. Дело в том, что в земной коре большая часть нефти не остается в материнской породе, а перемещается и скапливается в особых геологических объектах, называемых ловушками. Даже если предположить, что нефть имеет неорганическое происхождение, ловушки для нее все равно за редким исключением находятся в осадочных бассейнах.

Под действием различных факторов углеводороды отжимаются из нефтематеринских пород в породы-коллекторы, способные вмещать флюиды (нефть, природный газ, воду). Таким образом, нефтяное месторождение — вовсе не подземное «озеро», заполненное жидкостью, а достаточно плотная структура. Коллекторы характеризуются пористостью (долей содержащихся в них пустот) и проницаемостью (способностью пропускать через себя флюид). Для эффективного извлечения нефти из коллектора важно благоприятное сочетание обоих этих параметров.

Типы коллекторов

БОЛЬШАЯ ЧАСТЬ ЗАПАСОВ НЕФТИ СОДЕРЖИТСЯ В ДВУХ ТИПАХ КОЛЛЕКТОРОВ

Терригенные (пески, песчаники, алевролиты, некоторые глинистые породы и др.) состоят из обломков горных пород и минералов. Этот тип коллекторов наиболее распространен: на них приходится 58% мировых запасов нефти и 77% газа. В качестве пустотного пространства, в котором накапливается нефть, в основном выступают поры — свободное пространство между зернами, из которых состоит коллектор.

Читать еще:  Чистка крови от вредных веществ в домашних условиях народные средства

Карбонатные (в основном известняки и доломиты) занимают второе место по распространенности (42% запасов нефти и 23% газа). Имеют сложную трещиноватую структуру. Нефть обычно содержится в кавернах, появившихся в результате выветривания и вымывания твердой породы, а также в трещинах. Наличие трещин влияет и на фильтрационные свойства коллектора, обеспечивая проводимость жидкости.

Вулканогенные и вулканогенно-осадочные (кислые эффузивы и интрузивы, пемзы, туфы, туфопесчаники и др.) коллекторы отличаются характером пустотного пространства — в основном это трещины, — резкой изменчивостью свойств в пределах месторождений.

Глинисто-кремнисто-битуминозные отличаются значительной изменчивостью состава, неодинаковой обогащенностью органическим веществом. Промышленная нефтеносность глинисто-кремнисто-битуминозных пород установлена в баженовской (Западная Сибирь) и пиленгской (Сахалин) свитах.

Двигаясь по коллектору, флюид в какой-то момент может упереться в непроницаемый для него экран — флюидоупор. Слои такой породы называют покрышками, а вместе с коллектором они формируют ловушки, удерживающие нефть и газ в месторождении. В классическом варианте в верхней части ловушки может присутствовать газ (он легче). Снизу залежь подстилается более плотной, чем нефть, водой.

Классификации ловушек чрезвычайно разнообразны (часть из них см. на рис.). Наиболее простая и с точки зрения геологоразведки, и для дальнейшей добычи — антиклинальная ловушка (сводовое поднятие), перекрытая сверху пластом флюидоупора. Такие ловушки образуются в результате изгибов пластов осадочного чехла. Однако помимо изгибов внутренние пласты претерпевают и множество других деформаций. В результате тектонических движений, например, пластколлектор может деформироваться и потерять свою однородность. В этом случае процессы геологоразведки и добычи оказываются намного сложнее. Еще одна неприятность, которая поджидает нефтяников со стороны ловушек, — замещение проницаемых пород, обладающих хорошими коллекторскими свойствами, например песчаников, непроницаемыми. Такие ловушки называются литологическими.

Строение полимеров: состав, основные свойства, особенности

Многих интересует вопрос, какое строение у полимеров. Ответ на него будет дан в этой статье. Свойства полимера (далее — П) в целом делятся на несколько классов в зависимости от масштаба, в котором определяется свойство, а также от его физической основы. Самым основным качеством этих веществ является идентичность составляющих его мономеров (М). Второй набор свойств, известный как микроструктура, по существу обозначает расположение этих М в П в масштабе одной Ц. Эти основные структурные характеристики играют главную роль в определении объемных физических свойств этих веществ, которые показывают, как П ведет себя в качестве макроскопического материала. Химические свойства в наномасштабе описывают, как цепи взаимодействуют через различные физические силы. В макромасштабе они показывают, как основной П взаимодействует с другими химическими веществами и растворителями.

Вам будет интересно: Какова твердость соли по шкале твердости Мооса?

Идентичность

Идентичность повторяющихся звеньев, составляющих П, является его первым и наиболее важным атрибутом. Номенклатура этих веществ обычно основана на типе мономерных остатков, составляющих П. Полимеры, которые содержат только один тип повторяющихся звеньев, известны как гомо-П. В то же время П, содержащие два или более типов повторяющихся звеньев, известны как сополимеры. Терполимеры содержат три типа повторяющихся звеньев.

Вам будет интересно: Что такое явления? Самые красивые и страшные природные явления

Полистирол, например, состоит только из остатков стирольного М и поэтому классифицируется как гомо-П. Этиленвинилацетат, с другой стороны, содержит более одного вида повторяющихся звеньев и, таким образом, является сополимером. Некоторые биологические П состоят из множества различных, но структурно связанных мономерных остатков; например, полинуклеотиды, такие как ДНК, состоят из четырех типов нуклеотидных субъединиц.

Полимерная молекула, содержащая ионизируемые субъединицы, известна как полиэлектролит или иономер.

Микроструктура

Вам будет интересно: Что такое жать? Толкование и примеры предложений

Микроструктура полимера (иногда называемая конфигурацией) связана с физическим расположением остатков М вдоль основной цепи. Это элементы структуры П, которые требуют разрыва ковалентной связи, чтобы измениться. Строение оказывает сильное влияние на другие свойства П. Например, два образца натурального каучука могут демонстрировать различную долговечность, даже если их молекулы содержат одинаковые мономеры.

Строение и свойства полимеров

Этот момент чрезвычайно важно прояснить. Важной микроструктурной особенностью строения полимера является его архитектура и форма, которые связаны с тем, как точки ветвления приводят к отклонению от простой линейной цепи. Разветвленная молекула этого вещества состоит из основной цепи с одной или несколькими боковыми цепями или ответвлениями заместителя. Типы разветвленных П включают звездообразные, гребенчатые П, щеточные П, дендронизированные, лестничные и дендримеры. Существуют также двумерные полимеры, которые состоят из топологически плоских повторяющихся звеньев. Разнообразные методики могут быть использованы для синтеза П-материала с различными типами устройства, например, живой полимеризацией.

Другие качества

Состав и строение полимеров в науке о них связано с тем, как разветвление ведет к отклонению от строго линейной П-цепи. Ветвление может происходить случайным образом, или реакции могут быть спроектированы таким образом, чтобы нацеливаться на конкретные архитектуры. Это важная микроструктурная особенность. Архитектура полимера влияет на многие его физические свойства, включая вязкость раствора, расплава, растворимость в различных составах, температуру стеклования и размер отдельных П-катушек в растворе. Это важно для изучения содержащихся компонентов и строения полимеров.

Ветвление

Ветви могут образовываться, когда растущий конец молекулы полимера закрепляется либо (а) обратно на себя, либо (б) на другую П-цепь, и то и другое, благодаря отводу водорода, способно создать зону роста средней цепи.

Вам будет интересно: Караван-сарай — это. Значения, история, интересные факты

Эффект, связанный с разветвлением — химическое сшивание — образование ковалентных связей между цепями. Сшивание имеет тенденцию увеличивать Tg и повышать прочность и ударную вязкость. Среди других применений этот процесс используется для укрепления каучуков в процессе, известном как вулканизация, который основан на сшивании серой. Автомобильные шины, например, обладают высокой прочностью и степенью сшивания, чтобы уменьшить утечку воздуха и увеличить их долговечность. Резинка, с другой стороны, не сшита, что допускает отслаивание резины и предотвращает повреждение бумаги. Полимеризация чистой серы при более высоких температурах также объясняет, почему она становится более вязкой при повышенных температурах в расплавленном состоянии.

Сетка

Полимерная молекула с высокой степенью сшивки называется П-сеткой. Достаточно высокое отношение сшивки к цепи (Ц) может привести к образованию так называемой бесконечной сети или геля, в которой каждая такая ветвь связана по меньшей мере с одной другой.

С непрерывным развитием живой полимеризации синтез этих веществ с определенной архитектурой становится все более легким. Возможны такие архитектуры, как звездообразные, гребенчатые, щеточные, дендронизированные, дендримеры и кольцевые полимеры. Эти химические соединения со сложной архитектурой могут быть синтезированы либо с использованием специально подобранных исходных соединений, либо сначала путем синтеза линейных цепей, которые подвергаются дальнейшим реакциям для соединения друг с другом. Завязанные П состоят из множества внутримолекулярных циклизационных звеньев в одной П-цепи (ПЦ).

Разветвление

В целом, чем выше степень разветвления, тем более компактна полимерная цепь. Они также влияет на запутывание цепи, способность скользить мимо друг друга, что, в свою очередь, затрагивает объемные физические свойства. Длинноцепочечные деформации могут улучшить прочность полимера, ударную вязкость и температуру стеклования (Tg) из-за увеличения числа связей в соединении. С другой стороны, случайная и короткая величина Ц может снизить прочность материала из-за нарушения способности цепей взаимодействовать друг с другом или кристаллизоваться, что обусловлено строением молекул полимеров.

Пример влияния разветвления на физические свойства можно найти в полиэтилене. Полиэтилен высокой плотности (HDPE) имеет очень низкую степень разветвления, является относительно жестким и используется в производстве, например, бронежилетов. С другой стороны, полиэтилен низкой плотности (ПЭНП) имеет значительное количество длинных и коротких ветвей, является относительно гибким и используется в таких областях, как пластиковые пленки. Химическое строение полимеров способствует именно такому их применению.

Дендримеры

Дендримеры представляют собой особый случай разветвленного полимера, где каждая мономерная единица также является точкой разветвления. Это имеет тенденцию уменьшать переплетение межмолекулярных цепей и кристаллизацию. Родственная архитектура, дендритный полимер, не является идеально разветвленным, но обладает сходными свойствами с дендримерами из-за их высокой степени разветвленности.

Степень формирования сложности структуры, которая происходит во время полимеризации, может зависеть от функциональности используемых мономеров. Например, при свободнорадикальной полимеризации стирола добавление дивинилбензола, который имеет функциональность 2, приведет к образованию разветвленного П.

Инженерные полимеры

Инженерные полимеры включают природные материалы, такие как резина, синтетические материалы, пластмассы и эластомеры. Они являются очень полезным сырьем, потому что их структуры могут быть изменены и адаптированы для производства материалов:

  • с диапазоном механических свойств;
  • в широком спектре цветов;
  • с различными свойствами прозрачности.

Молекулярное строение полимеров

Полимер состоит из множества простых молекул, которые повторяют структурные единицы, называемые мономерами (М). Одна молекула этого вещества может состоять из количества от сотен до миллиона М и иметь линейную, разветвленную или сетчатую структуру. Ковалентные связи удерживают атомы вместе, а вторичные связи затем удерживают группы полимерных цепей вместе, образуя полиматериал. Сополимеры представляют собой типы этого вещества, состоящие из двух или более различных типов М.

Полимер – это органический материал, а основа любого такого типа вещества – цепь атомов углерода. Атом углерода имеет четыре электрона во внешней оболочке. Каждый из этих валентных электронов может образовывать ковалентную связь с другим атомом углерода или с чужеродным атомом. Ключом к пониманию строения полимера является то, что два атома углерода могут иметь до трех общих связей и все еще связываться с другими атомами. Элементы, наиболее часто встречающиеся в этом химическом соединении, и их валентные числа: H, F, Cl, Bf и I с 1 валентным электроном; O и S с 2 валентными электронами; n с 3 валентными электронами и C и Si с 4 валентными электронами.

Пример полиэтилена

Способность молекул образовывать длинные цепи жизненно важна для получения полимера. Рассмотрим материал полиэтилен, который сделан из газообразного этана, C2H6. Этан-газ имеет два атома углерода в цепи, и каждый из них имеет два валентных электрона с другим. Если две молекулы этана соединены вместе, одна из углеродных связей в каждой молекуле может быть разорвана, и две молекулы могут быть соединены углерод-углеродной связью. После того, как два метра соединены, на каждом конце цепи остаются еще два свободных валентных электрона для соединения других метеров или П-цепей. Процесс способен продолжать соединять больше метеров и полимеров вместе до тех пор, пока он не будет остановлен добавлением другого химического вещества (терминатора), который заполняет доступную связь на каждом конце молекулы. Это называется линейным полимером и является строительным блоком для термопластичных видов соединения.

Полимерная цепь часто показана в двух измерениях, но следует отметить, что они имеют трехмерное строение полимеров. Каждая связь находится под углом 109° к следующей, и, следовательно, углеродный остов проходит через пространство, как витая цепь TinkerToys. При приложении напряжения эти цепи растягиваются, и удлинение П может быть в тысячи раз больше, чем в кристаллических структурах. Таковы особенности строения полимеров.

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector
×
×